Curriculum

The curriculum has been designed by faculty at Sri Vidya Tech and leading industry leaders. The teaching, content and projects in the course are by world-renowned faculty and other practicing management professionals from leading companies.

Module 1: Introduction to Data Science (Duration-1hr)
  • What is Data Science?
  • What is Machine Learning?
  • What is Deep Learning?
  • What is AI?
  • Data Analytics & it’s types
Module 2: Introduction to Python (Duration-1hr)
  • What is Python?
  • Why Python?
  • Installing Python
  • Python IDEs
  • Jupyter Notebook Overview
Module 3: Python Basics (Duration-5hrs)
  • Python Basic Data types
  • Lists
  • Slicing
  • IF statements
  • Loops
  • Dictionaries
  • Tuples
  • Functions
  • Array
  • Selection by position & Labels
Module 4: Python Packages (Duration-2hrs)
  • Pandas
  • Numpy
  • Sci-kit Learn
  • Mat-plot library
Module 5: Importing Data (Duration-1hr)
  • Reading CSV files
  • Saving in Python data
  • Loading Python data objects
  • Writing data to csv file
Module 6: Manipulating Data (Duration-1hr)
  • Selecting rows/observations
  • Rounding Number
  • Selecting columns/fields
  • Merging data
  • Data aggregation
  • Data munging techniques
Module 7: Statistics Basics (Duration-11hrs)
  • Central Tendency
    • Mean
    • Median
    • Mode
    • Skewness
    • Normal Distribution
  • Probability Basics
    • What does mean by probability?
    • Types of Probability
    • ODDS Ratio?
  • Standard Deviation
    • Data deviation & distribution
    • Variance
  • Bias variance Trade off
    • Underfitting
    • Overfitting
  • Distance metrics
    • Euclidean Distance
    • Manhattan Distance
  • Outlier analysis
    • What is an Outlier?
    • Inter Quartile Range
    • Box & whisker plot
    • Upper Whisker
    • Lower Whisker
    • Scatter plot
    • Cook’s Distance
  • Missing Value treatment
    • What is a NA?
    • Central Imputation
    • KNN imputation
    • Dummification
  • Correlation
    • Pearson correlation
    • ositive & Negative correlation
Module 8: Error Metrics (Duration-3hrs)
  • Classification
    • Confusion Matrix
    • Precision
    • Recall
    • Specificity
    • F1 Score
  • Regression
    • MSE
    • RMSE
    • MAPE
Module 9: Machine Learning

Supervised Learning (Duration-6hrs)

  • Linear Regression
    • Linear Equation
    • Slope
    • Intercept
    • R square value
  • Logistic regression
    • ODDS ratio
    • Probability of success
    • Probability of failure Bias Variance Tradeoff
    • ROC curve
    • Bias Variance Tradeoff

Unsupervised Learning (Duration-4hrs)

  • K-Means
  • K-Means ++
  • Hierarchical Clustering

SVM (Duration-2hrs)

  • Support Vectors
  • Hyperplanes
  • 2-D Case
  • Linear Hyperplane

SVM Kernal (Duration-2hrs)

  • Linear
  • Radial
  • polynomial

Other Machine Learning algorithms (Duration-10hrs)

  • K – Nearest Neighbour
  • Naïve Bayes Classifier
  • Decision Tree – CART
  • Decision Tree – C50
  • Random Forest
Module 10: ARTIFICIAL INTELLIGENCE

AI Introduction (Duration-9hrs)

  • Perceptron
  • Multi-Layer perceptron
  • Markov Decision Process
  • Logical Agent & First Order Logic
  • AL Applications
Module 11: Deep Learning Algorithms (Duration-10hrs)

CNN – Convolutional Neural Network
RNN – Recurrent Neural Network
ANN – Artificial Neural Network

Introduction to NLP (Duration-5hrs)

  • Text Pre-processing
  • Noise Removal
  • Lexicon Normalization
  • Lemmatization
  • Stemming
  • Object Standardization

Text to Features (Feature Engineering) (Duration-5hrs)

  • Syntactical Parsing
  • Dependency Grammar
  • Part of Speech Tagging
  • Entity Parsing
  • Named Entity Recognition
  • Topic Modelling
  • N-Grams
  • TF – IDF
  • Frequency / Density Features
  • Word Embedding’s

Tasks of NLP (Duration-2hrs)

  • Text Classification
  • Text Matching
  • Levenshtein Distance
  • Phonetic Matching
  • Flexible String Matching

Request Free Demo